Search results for "Bacillus Phages"

showing 4 items of 4 documents

Identification of five novel tectiviruses in Bacillus strains: analysis of a highly variable region generating genetic diversity

2013

Our biosphere is abundant with unique and small genes for which no homologs are known. These genes, often referred to as orphans or ORFans, are commonly found in bacteriophage genomes but their origins remain unclear. We discovered five novel tectivirus-like genetic elements by screening more than five-hundred Bacillus strains. A highly variable region (HVR) of these viruses was shown to harbor ORFans in most of these otherwise well-conserved bacteriophages. Previous studies demonstrated that mutations close to this region dramatically alter bacteriophage gene regulation, suggesting that the acquisition of those ORFans may provide a source of genetic diversity that is then subject to geneti…

Molecular Sequence DataBacillusBacillus PhagesMicrobiologyGenomeBacteriophageMicroscopy Electron TransmissionLysogenic cycleGenetic variationAmino Acid SequenceGenetic variabilityMolecular BiologyGeneGeneticsGenetic diversitybiologyVirionta1182Genetic VariationSequence Analysis DNAGeneral Medicinebiology.organism_classificationBacillus PhageDNA ViralSequence AlignmentTectiviridaeResearch in Microbiology
researchProduct

Molecular Characterization of a Variant of Bacillus anthracis-Specific Phage AP50 with Improved Bacteriolytic Activity▿ †

2008

ABSTRACT The genome sequence of a Bacillus anthracis -specific clear plaque mutant phage, AP50c, contains 31 open reading frames spanning 14,398 bp, has two mutations compared to wild-type AP50t, and has a colinear genome architecture highly similar to that of gram-positive Tectiviridae phages. Spontaneous AP50c-resistant B. anthracis mutants exhibit a mucoid colony phenotype.

virusesMutantMolecular Sequence DataMutation MissenseGenetics and Molecular BiologyBacillus PhagesGenome ViralViral Plaque AssayApplied Microbiology and BiotechnologySyntenyBacteriophageBacteriolysisGene OrderPoint MutationBacillus (shape)Whole genome sequencingGeneticsEcologybiologyBase SequenceTectivirusVirionSequence Analysis DNAbiology.organism_classificationBacillus anthracisOpen reading frameBacillus anthracisDNA ViralTectiviridaeFood ScienceBiotechnologyTectiviridae
researchProduct

Phage-borne factors and host LexA regulate the lytic switch in phage GIL01.

2011

ABSTRACT The Bacillus thuringiensis temperate phage GIL01 does not integrate into the host chromosome but exists stably as an independent linear replicon within the cell. Similar to that of the lambdoid prophages, the lytic cycle of GIL01 is induced as part of the cellular SOS response to DNA damage. However, no CI-like maintenance repressor has been detected in the phage genome, suggesting that GIL01 uses a novel mechanism to maintain lysogeny. To gain insights into the GIL01 regulatory circuit, we isolated and characterized a set of 17 clear plaque ( cp ) mutants that are unable to lysogenize. Two phage-encoded proteins, gp1 and gp7, are required for stable lysogen formation. Analysis of …

Gene Expression Regulation ViralvirusesBacteriophages Transposons and PlasmidsBacillus thuringiensisBacillus PhagesBiologyMicrobiologyHost-Parasite InteractionsBacteriolysisLysogenBacterial ProteinsLysogenic cycleHost chromosomeSOS responseSOS Response GeneticsMolecular BiologyLysogenyGeneticsBinding SitesSerine Endopeptidasesbiochemical phenomena metabolism and nutritionBacillus PhageTemperatenessLytic cycleDNA ViralbacteriaVirus ActivationRepressor lexAProtein BindingJournal of bacteriology
researchProduct

Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit RecA-mediated auto-cleavage

2015

The SOS response in Eubacteria is a global response to DNA damage and its activation is increasingly associated with the movement of mobile genetic elements. The temperate phage GIL01 is induced into lytic growth using the host's SOS response to genomic stress. LexA, the SOS transcription factor, represses bacteriophage transcription by binding to a set of SOS boxes in the lysogenic promoter P1. However, LexA is unable to efficiently repress GIL01 transcription unless the small phage-encoded protein gp7 is also present. We found that gp7 forms a stable complex with LexA that enhances LexA binding to phage and cellular SOS sites and interferes with RecA-mediated auto-cleavage of LexA, the ke…

Gene Expression Regulation ViralSOS responsebacteriophagesTranscription GeneticvirusesRepressorBacillus PhagesBiologybakteriofagitBacteriophage03 medical and health sciencesSOS Response (Genetics)Viral ProteinsBacterial ProteinsLysogenic cycleGeneticsSOS responsePromoter Regions GeneticSOS Response GeneticsTranscription factor030304 developmental biologyGenetics0303 health sciences030306 microbiologyLexA repressorGene regulation Chromatin and EpigeneticsSerine Endopeptidasesta1182DNAbiochemical phenomena metabolism and nutritionbiology.organism_classification3. Good healthCell biologyRepressor Proteinsenzymes and coenzymes (carbohydrates)Rec A RecombinasesLytic cyclebacteriaRepressor lexAProtein BindingNucleic Acids Research
researchProduct